Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Big Data ; 5: 967477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36156935

RESUMO

Local studies and modeling experiments suggest that shallow groundwater and lateral redistribution of soil moisture, together with soil properties, can be highly important secondary water sources for vegetation in water-limited ecosystems. However, there is a lack of observation-based studies of these terrain-associated secondary water effects on vegetation over large spatial domains. Here, we quantify the role of terrain properties on the spatial variations of dry season vegetation decay rate across Africa obtained from geostationary satellite acquisitions to assess the large-scale relevance of secondary water effects. We use machine learning based attribution to identify where and under which conditions terrain properties related to topography, water table depth, and soil hydraulic properties influence the rate of vegetation decay. Over the study domain, the machine learning model attributes about one-third of the spatial variations of vegetation decay rates to terrain properties, which is roughly equally split between direct terrain effects and interaction effects with climate and vegetation variables. The importance of secondary water effects increases with increasing topographic variability, shallower groundwater levels, and the propensity to capillary rise given by soil properties. In regions with favorable terrain properties, more than 60% of the variations in the decay rate of vegetation are attributed to terrain properties, highlighting the importance of secondary water effects on vegetation in Africa. Our findings provide an empirical assessment of the importance of local-scale secondary water effects on vegetation over Africa and help to improve hydrological and vegetation models for the challenge of bridging processes across spatial scales.

2.
J Adv Model Earth Syst ; 14(3): e2021MS002730, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35865621

RESUMO

Hydrological interactions between vegetation, soil, and topography are complex, and heterogeneous in semi-arid landscapes. This along with data scarcity poses challenges for large-scale modeling of vegetation-water interactions. Here, we exploit metrics derived from daily Meteosat data over Africa at ca. 5 km spatial resolution for ecohydrological analysis. Their spatial patterns are based on Fractional Vegetation Cover (FVC) time series and emphasize limiting conditions of the seasonal wet to dry transition: the minimum and maximum FVC of temporal record, the FVC decay rate and the FVC integral over the decay period. We investigate the relevance of these metrics for large scale ecohydrological studies by assessing their co-variation with soil moisture, and with topographic, soil, and vegetation factors. Consistent with our initial hypothesis, FVC minimum and maximum increase with soil moisture, while the FVC integral and decay rate peak at intermediate soil moisture. We find evidence for the relevance of topographic moisture variations in arid regions, which, counter-intuitively, is detectable in the maximum but not in the minimum FVC. We find no clear evidence for wide-spread occurrence of the "inverse texture effect" on FVC. The FVC integral over the decay period correlates with independent data sets of plant water storage capacity or rooting depth while correlations increase with aridity. In arid regions, the FVC decay rate decreases with canopy height and tree cover fraction as expected for ecosystems with a more conservative water-use strategy. Thus, our observation-based products have large potential for better understanding complex vegetation-water interactions from regional to continental scales.

3.
Glob Chang Biol ; 27(24): 6467-6483, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34498351

RESUMO

The responses of forest carbon dynamics to fluctuations in environmental conditions at a global scale remain elusive. Despite the understanding that favourable environmental conditions promote forest growth, these responses have been challenging to observe across different ecosystems and climate gradients. Based on a global annual time series of aboveground biomass (AGB) estimated from radar satellites between 1992 and 2018, we present forest carbon changes and provide insights on their sensitivities to environmental conditions across scales. Our findings indicate differences in forest carbon changes across AGB classes, with regions with carbon stocks of 50-125 MgC ha-1 depict the highest forest carbon gains and losses, while regions with 125-150 MgC ha-1  have the lowest forest carbon gains and losses in absolute terms. Net forest carbon change estimates show that the arc-of-deforestation and the Congo Basin were the main hotspots of forest carbon loss, while a substantial part of European forest gained carbon during the last three decades. Furthermore, we observe that changes in forest carbon stocks were systematically positively correlated with changes in forest cover fraction. At the same time, it was not necessarily the case with other environmental variables, such as air temperature and water availability at the bivariate level. We also used a model attribution method to demonstrate that atmospheric conditions were the dominant control of forest carbon changes (56% of the total study area) followed by water-related (29% of the total study area) and vegetation (15% of the total study area) conditions. Regionally, we find evidence that carbon gains from long-term forest growth covary with long-term carbon sinks inferred from atmospheric inversions. Our results describe the contributions from the atmosphere, water-related and vegetation conditions to forest carbon changes and provide new insights into the underlying mechanisms of the coupling between forest growth and the global carbon cycle.


Assuntos
Carbono , Árvores , Biomassa , Sequestro de Carbono , Ecossistema , Florestas
4.
Sci Total Environ ; 795: 148587, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34247069

RESUMO

Snow is a crucial component of the hydrological cycle in the Western Himalaya. Water from snowmelt is used in various sectors in downstream regions, thus playing a critical role in securing the livelihoods of millions of people. In this study, we investigated the future evolution of snow cover and snowmelt in the Panjshir catchment of Afghanistan, a sub-basin of the Indus, in the Western Himalaya. We applied a three-step approach to select a few global climate model (GCM) simulations from CMIP5 climate datasets for RCP4.5 and RCP8.5, which showed reasonable performance with ERA5-Land dataset for the chosen historical period (1981-2010). The selected model simulations were then segregated into two groups: those projecting a cold-wet climate and those projecting a warm-dry climate by the end of the 21st century (2071-2100). These GCMs were downscaled to a higher resolution using empirical statistical downscaling. To simulate the snow processes, we used the distributed cryospheric-hydrological J2000 model. The results indicate that the model captures well the snow cover dynamics for the historical period when compared with the daily MODIS-derived snow cover. The J2000 model was then forced by climate projections from the selected GCMs to quantify future changes in snow cover area, snow storage and snowmelt. While a 10-18% reduction in annual snow cover area is projected in the cold-wet models, a 22-36% reduction is projected in the warm-dry models. Similarly, the snow cover area is projected to decrease in all elevation bands under climate change. At the seasonal scale, across all models and scenarios, the snow cover in the autumn and spring seasons are projected to reduce by as much as 25%, with an increase in winter and spring snowmelt and a decrease in summer snowmelt. The projected changes in the seasonal availability of snowmelt-driven water resources are likely to have direct implications for water-dependent sectors in the region and call for a better understanding of water usage and future adaptation practices.


Assuntos
Hidrologia , Neve , Mudança Climática , Humanos , Estações do Ano , Recursos Hídricos
6.
Proc Natl Acad Sci U S A ; 116(46): 22972-22976, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31659019

RESUMO

Accelerated soil erosion has become a pervasive feature on landscapes around the world and is recognized to have substantial implications for land productivity, downstream water quality, and biogeochemical cycles. However, the scarcity of global syntheses that consider long-term processes has limited our understanding of the timing, the amplitude, and the extent of soil erosion over millennial time scales. As such, we lack the ability to make predictions about the responses of soil erosion to long-term climate and land cover changes. Here, we reconstruct sedimentation rates for 632 lakes based on chronologies constrained by 3,980 calibrated 14C ages to assess the relative changes in lake-watershed erosion rates over the last 12,000 y. Estimated soil erosion dynamics were then complemented with land cover reconstructions inferred from 43,669 pollen samples and with climate time series from the Max Planck Institute Earth System Model. Our results show that a significant portion of the Earth surface shifted to human-driven soil erosion rate already 4,000 y ago. In particular, inferred soil erosion rates increased in 35% of the watersheds, and most of these sites showed a decrease in the proportion of arboreal pollen, which would be expected with land clearance. Further analysis revealed that land cover change was the main driver of inferred soil erosion in 70% of all studied watersheds. This study suggests that soil erosion has been altering terrestrial and aquatic ecosystems for millennia, leading to carbon (C) losses that could have ultimately induced feedbacks on the climate system.


Assuntos
Ecologia/história , Sedimentos Geológicos/química , Atividades Humanas/história , Isótopos de Carbono/análise , Clima , Ecossistema , História Antiga , Humanos , Lagos/química , Pólen/química , Solo/química
7.
Sci Data ; 6(1): 74, 2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133670

RESUMO

Although a key driver of Earth's climate system, global land-atmosphere energy fluxes are poorly constrained. Here we use machine learning to merge energy flux measurements from FLUXNET eddy covariance towers with remote sensing and meteorological data to estimate global gridded net radiation, latent and sensible heat and their uncertainties. The resulting FLUXCOM database comprises 147 products in two setups: (1) 0.0833° resolution using MODIS remote sensing data (RS) and (2) 0.5° resolution using remote sensing and meteorological data (RS + METEO). Within each setup we use a full factorial design across machine learning methods, forcing datasets and energy balance closure corrections. For RS and RS + METEO setups respectively, we estimate 2001-2013 global (±1 s.d.) net radiation as 75.49 ± 1.39 W m-2 and 77.52 ± 2.43 W m-2, sensible heat as 32.39 ± 4.17 W m-2 and 35.58 ± 4.75 W m-2, and latent heat flux as 39.14 ± 6.60 W m-2 and 39.49 ± 4.51 W m-2 (as evapotranspiration, 75.6 ± 9.8 × 103 km3 yr-1 and 76 ± 6.8 × 103 km3 yr-1). FLUXCOM products are suitable to quantify global land-atmosphere interactions and benchmark land surface model simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...